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Abstract. We present a class of plane-wave solutions for some Hopf theories defined on the symmetric
space SU(2)/U(1) in 3 + 1 space-time dimensions, using a recently proposed ansatz by Hirayama and
Yamashita. These solutions are not solitonic, but they provide us with an example of how plane-wave
solutions arise in non-linear field theories.

The Hopf theories are non-linear scalar models in 3 + 1
space-time dimensions defined on the symmetric space
SU(2)/U(1) = S2. The condition necessary for the Hopf
theories to exhibit the static solitons stabilized by the non-
zero topological number is that they must be constructed
in such a way to circumvent Derrick’s scaling theorem [1].
The topological solitons presented in the Hopf theories are
classified by the linking number, which characterizes the
linking property of the string-like configurations. The soli-
tonic structure of the theories is generally line-like. This
differs from the case of instantons or skyrmions, where the
soliton number is classified by the winding number and the
solitonic structure is point-like.
Generally speaking, all Hopf theories consist of a real

three-component vector field �n(x) = (n1, n2, n3), with
unit length �n · �n = 1. If we restrict ourselves to the static
field configurations, a topological characterization results.
To see this, we observe that for a static field configura-
tion to have a finite energy, the vector field �n(r) must ap-
proach a constant value at spatial infinity, i.e. �n(r) → �n0
as |r| → ∞. This boundary condition suggests that the
Euclidean R

3 space be regarded as a compactified three-
dimensional sphere, an S3 space. Hence, at any fixed time
the vector field �n(r) defines a map that is known as the
Hopf map from the 3-sphere space to the 2-sphere tar-
get. The solitonic solutions constructed in this way are
therefore called hopfions. Note that the spheres between
the mapping do not have the same dimensions (S3 to S2).
Mathematically, such an unusual map falls into the non-
trivial homotopy classes, π3(S2) = Z.
Since the vector field �n(x) is three-dimensional, we

can regard it as the expansion coefficient of an SU(2)
Lie-algebra valued vector field �n(x), that is, �n(x) ≡∑3

i=1 n
i(x)Ti. Here, the Ti for i= 1 to 3 are the generators

of the SU(2) Lie algebra. They are defined by Ti = 1
2σi in

terms of the Pauli matrices and satisfy Tr(TiTj) = 1
2 δij .

Without loss of generality, the vector field �n(x) can then
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be identified as the conjugation of the Cartan subalgebra
T3 by a generic group element U(x) in SU(2) [2, 3]:

�n(x) ≡ U T3 U
† . (1)

It is apparent that in (1) the field �n(x) remains invari-
ant under a residual U(1)R gauge transform of the SU(2).
This is a right diagonal transformation: U(x)→ U(x)h(x),
where h(x) = ei α(x) T3 . Therefore, the gauge-invariant
fields of U(x) take values in the coset space SU(2)/U(1) =
S2 as expected.
Using (1), the derivative of the Lie-algebra valued field

�n(x) with respect to the space-time variable xµ takes the
form

∂µ�n = i [�n,Rµ ] . (2)

In this equation, we introduce the right-invariant Maurer–
Cartan covariant vectorRµ, which is an SU(2) Lie-algebra
valued current:

Rµ ≡ Ri
µ Ti = −1

i
∂µU U

† , (3)

for i = 1, 2, 3. By construction, the covariant vectorRµ(x)
defined in (3) acts as a pure gauge connection, since it
satisfies the zero curvature condition, namely, the Maurer–
Cartan identity

∂µRν − ∂νRµ = −i [Rµ,Rν ] . (4)

With the definition of the Maurer–Cartan covariant vec-
tor Rµ in (3), the topological charge, or equivalently
the Hopf charge, associated with each field configura-
tion can easily be constructed. The expression for the
conserved Hopf charge QH [3, 4] takes the simple form
QH = (32π2)−1εijk

∫
d3xR3

i (∂jR
3
k − ∂kR

3
j ), where εijk is

the Levi-Civita tensor. The residual U(1)R gauge symme-
try is evident in this expression.
In this letter, we shall present plane-wave solutions

for some Hopf theories defined on the symmetric space
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SU(2)/U(1) = S2 in 3+ 1 space-time dimensions, using a
recently proposed ansatz by Hirayama and Yamashita [5].
Among the Hopf theories, we are particularly interested
in the Nicole model [6], the Aratyn–Ferreira–Zimerman
model [7], and the Faddeev–Skyrme model [8]. The details
of these models will be presented later. Though the solu-
tions we offer carry no topological number, they provide us
with an example on how plane-wave solutions arise in Hopf
theories. Originally, the Hirayama–Yamashita ansatz [5]
was proposed to construct a class of exact solutions for
the SU(2) Skyrme model [9] and the Faddeev–Skyrme
model [8]. The covariant field Rµ(x) (3) can be given ex-
plicitly; yet the final expression for the scalar field U(x)
is symbolical since it contains an ordering operation. It
is found that these solutions are not solitonic, but with
wave characteristics in the Minkowski space [5]. A further
extension of the ansatz is reported in [10]. The general-
ization of the results to the SU(3) Skyrme model can be
found in [11].
In essence, we are seeking the solution of the scalar

field U(x) given in (1) with the following form [5]:

U(x) = U(ξ, η), (5)

where we define ξ = k · x and η = l · x. The two constant
four-vectors kµ and lµ are light-like and arbitrary; that
is, they satisfy k2 = l2 = 0 and k · l �= 0. Using the
proposed solution (5), the right current Rµ(x) defined in
(3) is rewritten as

Rµ(x) = kµ A(ξ, η) + lµ Λ(ξ, η). (6)

Here,A(ξ, η) andΛ(ξ, η) are two Lie-algebra valued fields,
which are defined respectively by

A(ξ, η) = Ai(ξ, η)Ti ≡ −1
i
∂ξU(ξ, η)U†(ξ, η), (7)

Λ(ξ, η) = Λi(ξ, η)Ti ≡ −1
i
∂ηU(ξ, η)U†(ξ, η). (8)

The shorthand notation ∂ξ = ∂
∂ξ and ∂η = ∂

∂η is used.
We then make a further simplification by assuming that
the field Λ in (8) is a constant Lie-algebra valued element
[5]. As a result, the Maurer–Cartan identity (2) and the
derivative equation of the field �n (4) are reduced to the
following equations:

∂ηA(ξ, η) = −i [Λ,A(ξ, η) ] , (9)

∂η�n(ξ, η) = −i [Λ, �n(ξ, η) ] , (10)

∂ξ�n(ξ, η) = −i [A(ξ, η), �n(ξ, η) ] . (11)

Note that the Lie-algebra valued fieldsA(ξ, η) and �n(ξ, η),
having the same dependence on the η-variable, are not
really independent. Both fields are related to each other
through the constraint equation (11).
Next, we solve the Lie-algebra valued fieldsA(ξ, η) and

�n(ξ, η) satisfying (9) and (10), respectively, provided that
theΛ is a Lie-algebra valued constant. Let us first consider
the simplified Maurer–Cartan equation (9). In the same
manner, the solution of �n(ξ, η) in (10) can be found. Since

(9) is linear in the Lie-algebra valued field A(ξ, η), we
write the solution in the form

A(ξ, η) = e−
i
2 ω ηA(ξ). (12)

Then the substitution of this solution (12) into the differ-
ential equation (9) results in a set of linear homogeneous
equations for the hermitian matrix (ΛkEk) as follows:

ω

2
A(ξ) = (ΛkEk)ij Aj(ξ)Ti , (13)

where the three-dimensional matrices (Ek)ij ≡ −i εkij rep-
resent the adjoint representation of the SU(2) Lie algebra.
It is easy to determine the eigenvalues and the corre-

sponding eigenvectors of (13). The three eigenvalues are

ω = 0,±2
√
B2 . (14)

Here B2 = ΛiΛi is the quadratic Casimir invariant out of
the Lie-algebra valued constant Λ. The three eigenvectors
of the eigenequation (13) are constructed as follows. The
normalized eigenvector with vanishing eigenvalue ω = 0 is
given by

λ =
1√
B2

Λ. (15)

The normalized eigenvector of the eigenvalue ω = +2
√
B2,

designated by v, is

v =
1√

2B2(B2 − Λ2
3)

(
Λ3 Λ −

√
B2 Λf −B2 ∆

)
, (16)

where Λf = i ε3ij Λj Ti and ∆ = δ3i Ti are two extra Lie-
algebra valued constants. δij is the three-dimensional Kro-
necker delta. Similarly, the corresponding eigenvector with
eigenvalue ω = −2√B2 is the hermitian conjugate of the
eigenvector v (16) and will be denoted by v̄.
It is straightforward to check the orthogonality condi-

tions among these eigenvectors λ, v, and v̄:

Tr(λλ) = Tr(v v̄) =
1
2
. (17)

All other traces are identically zero, for instance,
Tr(λv) = 0, Tr(v v) = 0, and so on.
To obtain the general solution of the Lie-algebra val-

ued field A(ξ, η) fulfilling both (9) and (11), it is useful
to calculate the commutation relations among all of the
eigenvectors. The results are

[λ,v] = v,
[λ, v̄] = −v̄, (18)
[v, v̄] = λ.

Let us give a brief summary of what we have demon-
strated concerning the solutions of the simplified Maurer–
Cartan identity (9). Since it is linear in the Lie-algebra
valued field A(ξ, η), the equation becomes the eigenvalue
equation (13). The eigenvalues are found to be 0 and
±2√B2, see (14), while the eigenvectors are λ, v and v̄;
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these are presented in (15) and (16). As a result, the gen-
eral solution for the Lie-algebra valued field A(ξ, η) satis-
fying (9) can be expressed in the form

A(ξ, η) (19)

= fλ(ξ)λ+ f(ξ)
[
ei (θ(ξ)− 1

2 ω η) v + e−i (θ(ξ)− 1
2 ω η) v̄

]
.

In this general expression, the functions fλ(ξ), f(ξ), and
θ(ξ) are chosen to be real due to the hermiticity of the field
A(ξ, η) (7). However, these functions are not arbitrary.
They can be determined by using the constraint equation
(11) as well as the Lagrange equation of motion of the
Hopf theory.
Let us proceed to discuss the general solution of the

Lie-algebra valued field �n(ξ, η) in (10). Because it has
a form exactly the same as the one of (9) for the field
A(ξ, η), we conclude that the general solution of �n(ξ, η)
can be written

�n(ξ, η) (20)

= gλ(ξ)λ+ g(ξ)
[
ei(φ(ξ)− 1

2 ω η) v + e−i(φ(ξ)− 1
2 ω η) v̄

]
.

Note that the field �n(ξ, η) defined in (1) is also hermitian,
the gλ(ξ), g(ξ), and φ(ξ) in (20) are again real functions.
Furthermore, from the normalization of the field �n(ξ, η)
by Tr(�n�n) = 1

2 , one infers that

gλ(ξ)2 + 2 g(ξ)2 = 1. (21)

Thus, we can either choose |g(ξ)| ≤ √
1/2 being a

bounded function, or alternatively choose |gλ(ξ)| ≤ 1 to
be bounded.
We have obtained the general solutions for both Lie-

algebra valued fields A(ξ, η) and �n(ξ, η) in (19) and (20).
As mentioned earlier, these two fields have to satisfy the
constraint equation (11). In effect, the constraint produces
two relations among the five real functions fλ(ξ), f(ξ),
g(ξ), θ(ξ), and φ(ξ) introduced above in (19) and (20).
For convenience, we take f(ξ) and θ(ξ) not to be indepen-
dent in (19). It is found that the modular function f(ξ) of
A(ξ, η) can be written in this form:

f(ξ)2 (22)

=
1

1− 2 g(ξ)2
[
(g(ξ)′)2 + g(ξ)2 (fλ(ξ) + φ(ξ)′)

2
]
,

where g(ξ)′ = ∂ξg(ξ) and φ(ξ)′ = ∂ξφ(ξ). In the same vein,
the angular function θ(ξ) of A(ξ, η) obeys the following
expression:

θ(ξ) = φ(ξ)− arctg
[

g(ξ)′

g(ξ) (fλ(ξ) + φ(ξ)′)

]
. (23)

Yet, the functions fλ(ξ), g(ξ), and φ(ξ) remain arbitrary
until a specific form of the Lagrangian is considered.
The discussion on the general solution for the Lie-

algebra valued field �n(ξ, η) is useful to construct a class
of plane-wave solutions for the Hopf theories. Next, we
shall employ this method to study the three particular

Hopf theories. For each Hopf theory, by applying the cor-
responding Lagrange equation of motion, we determine
the explicit form for the field �n(ξ, η) in (20), that is, de-
termine the real functions g(ξ) and φ(ξ). Consequently,
the solutions of the field A(ξ, η) can be readily established
from the relations (22) and (23). Moreover, the scalar field
U(x) given in (1) can be symbolically constructed; that
would involve an ordering operation, as shown and dis-
cussed in [5].
The first Hopf theory we are interested in is the so-

called Nicole model [6]. It is modified from the O(3) non-
linear sigma model in an exotic fashion to give a scaling
neutral theory. The model is described by the Lagrangian
density

LN = −
(

−1
4
∂µ�n · ∂µ�n

) 3
2

, (24)

where �n = (n1, n2, n3) is a three-dimensional vector field
with unit length �n · �n = 1. Note that, without the value
3
2 of the power in (24), the theory is just the ordinary
O(3) non-linear sigma model, which cannot support sta-
ble solitons in 3 + 1 dimensions due to the usual obstacle
of Derrick’s scaling theorem [1]. However, the model (24)
with the presence of the 3

2 power will circumvent this ob-
stacle and admit stable topological solitons. The Lagrange
equation of motion for the model (24) is derived as

�n×
(
�n×

[
(∂ �n · ∂ �n) ∂2�n+

1
2
∂µ (∂ �n · ∂ �n) ∂µ�n

])
= 0 .

(25)
If we adopt the ansatz (5), the space-time dependence of
the vector field �n becomes �n(x) = �n(ξ, η). This choice ren-
ders the alternative expression for the equation of motion

�n× (�n× [ 4 (∂ξ�n · ∂η�n) ∂ξ∂η�n (26)
+ ∂ξ (∂ξ�n · ∂η�n) ∂η�n+ ∂η (∂ξ�n · ∂η�n) ∂ξ�n ]) = 0 .

Now, according to our construction, the vector field �n(ξ, η)
is just the expansion coefficient of the Lie-algebra val-
ued field �n(ξ, η) through the relation �n =

∑3
i=1 n

iTi.
The plane-wave solutions are then constructed by directly
plugging the general solution of �n(ξ, η) (20) into the alter-
native equation of motion (26). To satisfy this equation
of motion, it is found that the two real functions given
in (20) have solutions; the function g(ξ) is arbitrary but
bounded, |g(ξ)| ≤ √

1/2, while φ(ξ) = c. Here, c is an
integral constant. As a result, the Lie-algebra valued field
�n(ξ, η) in the Nicole model takes the simple form

�nN(ξ, η) (27)

=
√
1− 2g(ξ)2 λ+ g(ξ)

[
ei(c − 1

2 ω η) v + e−i(c − 1
2 ω η) v̄

]
,

where the subscript “N” denotes the case of the Nicole
model. Thus, the Lie-algebra valued field A(ξ, η) (19) can
be determined by making use of the relations (22) and
(23). The result will be analogous to the expression of
the field �nN(ξ, η) in (27). Because the function g(ξ) in
the formula (27) remains undetermined, the Lie-algebra
valued field �nN(ξ, η) obtained above represents the class
of plane-wave solutions for the Nicole model.
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The second Hopf theory to be discussed is the Aratyn–
Ferreira–Zimerman model presented in [7], where the
model is solved in toroidal coordinates and the solutions
are found to represent an infinite number of hopfions. It
is described by the Lagrangian density

LAFZ = − ([�n · (∂µ�n× ∂ν�n)] [�n · (∂µ�n× ∂ν�n)])
3
4 , (28)

where �n · �n = 1 is assumed. Just like the discussion on
the scaling property of the Nicole model (24), the value of
the power 3

4 in the model (28) is introduced such that the
theory admits stable solitons. If we define the rank-two
antisymmetric tensor

Hµν ≡ �n · (∂µ�n× ∂ν�n) , (29)

then Lagrange’s equation of motion for the Aratyn–
Ferreira–Zimerman model (28) is

�n× ∂µ

(
∂ν

[
(HαβHαβ)

− 1
4 Hµν

]
�n

)
= 0 . (30)

The alternative equation of motion can be obtained by
imposing the ansatz (5) on the space-time dependence of
the vector field �n(x) = �n(ξ, η). It reads

�n× (∂η�n ∂ξ − ∂ξ�n ∂η) [�n · (∂ξ�n× ∂η�n)] = 0 . (31)

Similar to the discussion in the Nicole model, the Lie-
algebra valued field �n(ξ, η) has �n(ξ, η) as expansion coef-
ficient. Thus, we obtain the plane-wave solutions of the
model by substituting the general form of �n(ξ, η) (20)
into the alternative equation of motion (31). This time,
the calculation shows that the gλ(ξ) is a linear func-
tion in ξ, whereas the φ(ξ) remains arbitrary. We take
gλ(ξ) = a ξ + b, where a and b are two given constants
and |gλ(ξ)| ≤ 1 is bounded. So, the explicit form of the
Lie-algebra valued field �n(ξ, η) looks like

�nAFZ(ξ, η) = gλ(ξ)λ

+
1√
2

(
1− gλ(ξ)2

) 1
2

×
[
ei(φ(ξ)− 1

2 ω η) v + e−i(φ(ξ)− 1
2 ω η) v̄

]
, (32)

where the subscript “AFZ” denotes the case of the
Aratyn–Ferreira–Zimerman model. Furthermore, with the
help of the relations (22) and (23), the solution of the
Lie-algebra valued field A(ξ, η), (19), can simply be es-
tablished. Note that the function φ(ξ) in (32) is arbitrary.
Therefore, the expression of the field �nAFZ(ξ, η) in (32)
represents the class of plane-wave solutions for the model
(28).
The third and the last model we consider is the

Faddeev–Skyrme model [8]. The original motivation for
proposing this model is to describe the SU(2) Yang–Mills
theory in its low-energy limit [12]. Recent numerical stud-
ies have revealed the intricate and fascinating structures
of the model [13]. The Lagrangian density of the Faddeev–
Skyrme model takes the form

LFS = m2 ∂µ�n · ∂µ�n− 1
2 e2

[�n · (∂µ�n× ∂ν�n)]
2
, (33)

where m and e are two coupling constants. It is obvious
that the first term in (33) represents the ordinary O(3)
non-linear sigma model, while the second term, as sug-
gested by the Derrick scaling theorem [1], is introduced
to prevent an instability of the field configurations. The
equation of motion of the Faddeev–Skyrme model (33) is
written as

�n×
[
∂µ

(
m2 (�n× ∂µ�n)− 1

e2
[�n · (∂µ�n× ∂ν�n)] ∂ν�n

)]
= 0.

(34)
Alternatively, the use of the ansatz (5) on the field �n(x) =
�n(ξ, η) results in the following equation of motion [5]:

�n× [∂ξ (σ (�n× ∂η�n) + [�n · (∂ξ�n× ∂η�n)] ∂η�n) (35)
+ ∂η (σ (�n× ∂ξ�n)− [�n · (∂ξ�n× ∂η�n)] ∂ξ�n)] = 0 ,

where σ = m2e2

(l·k) is a combined dimensionless parameter.
The plane-wave solutions are obtained by substituting the
general solution of �n(ξ, η) (20) into the above equation
of motion (35). The results are found to be as follows.
The function g(ξ) is a bounded constant g(ξ) = c1, where
|c1| ≤ √

1/2 is a constant. In addition, the solution for
φ(ξ) is φ(ξ) = c2, where c2 is another constant. Hence,
the solution of the Lie-algebra valued fields �n(ξ, η) for the
Faddeev–Skyrme model is very simple:

�nFS(ξ, η) (36)

=
√
1− 2 c21 λ+ c1

[
ei(c2− 1

2 ω η) v + e−i(c2− 1
2 ω η) v̄

]
,

where the subscript “FS” means the case of the Faddeev–
Skyrme model. Moreover, by the use of the relations (22)
and (23), the solution of the field A(ξ, η) (19) can be got-
ten with ease. Note that there is no ξ-variable dependence
in the formula (36) for the field �nFS(ξ, η). Nevertheless,
the formula (36) still represents the plane-wave solution
of the Faddeev–Skyrme model. The ξ-independent fea-
ture of the solution can be understood in the following
way. First, let us concentrate on the expression of �nN(ξ, η)
(27) of the Nicole model. We observe that the Lagrangian
with non-linear sigma term, the term like (∂µ�n · ∂µ�n),
will set a very stringent constraint on the angular func-
tion φ(ξ) of the Lie-algebra valued field �n(ξ, η). Simi-
larly, from the solution of �nAFZ(ξ, η) (32) of the Aratyn–
Ferreira–Zimerman model, the fourth derivative term like
[�n · (∂µ�n× ∂ν�n)]

2 will yield another stringent constraint
on the modular function g(ξ) of the field �n(ξ, η). Since the
Faddeev–Skyrme model contains both terms in the La-
grangian (33), the combinative effect of the both terms
consequently gives rise to a very simple form of the solu-
tion of the field �nFS(ξ, η) (36). A result on the plane-wave
solutions for the model, which is similar to (36) but using
a different approach, has been obtained in [5].
In conclusion, we discuss the applicability of the re-

cently proposed ansatz, the Hirayama–Yamashita ansatz,
to the Hopf theories that are defined on the symmetric
space SU(2)/U(1). Using the method we have presented,
the class of plane-wave solutions for three Hopf theories is
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separately constructed. The theories considered in this let-
ter are the Nicole model, the Aratyn–Ferreira–Zimerman
model and the Faddeev–Skyrme model. Though these so-
lutions are not solitonic, they provide us with an example
on how plane-wave solutions arise in non-linear field the-
ories. Let us mention that the method established here
can be used to study the non-trivial structure of the
plane-wave solutions for the generalized Hopf theories,
for example, the model defined on the symmetric space
SU(3)/U(1)2 [2].

This work was supported in part by Taiwan’s National Science
Council Grant No. 91-2112-M-194-009.

References

1. R. Hobart, Proc. Roy. Soc. Lond. 82, 201 (1963);
G. Derrick, J. Math. Phys. 5, 1252 (1964)

2. L.D. Faddeev, A.J. Niemi, Phys. Lett. B 449, 214 (1999);
Phys. Lett. B 464, 90 (1999)

3. W.-C. Su, Chin. J. Phys. 40, 516 (2002); Phys. Lett. B
525 (2002) 201

4. E.A. Bergshoeff, R.I. Nepomechie, H.J. Schnitzer, Nucl.
Phys. B 249, 93 (1985)

5. M. Hirayama, J. Yamashita, Phys. Rev. D 66, 105019
(2002)

6. D.A. Nicole, J. Phys. G 4, 1363 (1987)
7. H. Aratyn, L.A. Ferreira, A.H. Zimerman, Phys. Lett. B

456, 162 (1999); Phys. Rev. Lett. 83, 1723 (1999)
8. L.D. Faddeev, Princeton preprint IAS-75-QS70 (1975)
9. T.H.R. Skyrme, Nucl. Phys. 31, 556 (1961)
10. M. Hirayama, C.G. Shi, J. Yamashita, Phys. Rev. D 67,

105009 (2003)
11. W.-C. Su, to appear in Phys. Lett. B, hep-th/0305233
12. L.D. Faddeev, A.J. Niemi, Nature (London) 387, 58

(1997); Phys. Rev. Lett. 82, 1624 (1999)
13. R.A. Battye, P.M. Sutcliffe, Phys. Rev. Lett. 81, 4798

(1998); Proc. Roy. Soc. Lond. A 455, 4305 (1999)


